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概要

てんかんは，脳内における異常な電気活動によって反復的な発作を引き起こす神経疾患である．

抗てんかん薬が効かない難治性てんかんにおいては，外科的切除が治療の選択肢となる場合があ

るが，機能温存の観点から切除範囲を可能な限り限定する必要がある．本研究では，順列エント

ロピーがてんかん発作の判別およびてんかん焦点の同定に有効であることを示す．さらに，順列

エントロピーの相関に基づいて電極間ネットワークを構築し，モジュラリティに基づくコミュニ

ティ分割を行うことで，てんかん焦点領域の抽出が可能であることを示す．

1 背景・目的

てんかんは，脳内神経細胞の過剰な放電に起因する異常な電気活動により，反復性の発作を引き起

こす神経疾患である．世界保健機関（World Health Organization: WHO）の報告によれば，世界全

体で約 5,000万人がてんかんに罹患しており，全年齢層において最も一般的な神経疾患の一つとされ

ている [1]．てんかん発作の症状は，意識消失や全身痙攣などの運動症状に加えて，感覚異常や記憶

障害などと多岐にわたる．これらの発作は突発的に発生することが多く，患者の日常生活や社会活動

に深刻な影響を及ぼす．てんかん患者の約 30% は標準的な抗てんかん薬では十分な発作の抑制効果

が得られない難治性てんかんと診断される．このような症例に対しては，発作の原因となる脳部位を

切除する外科治療が検討される．てんかん発作の起点となる異常な電気活動が最初に発生する脳領域

は，てんかん焦点と呼ばれる．この焦点において生じた異常な神経活動が，脳内の複雑な神経ネット

ワークを介して周辺領域へ伝播することで発作へと発展する．したがって，てんかん焦点を高精度に

同定するとともに，正常な脳機能を温存するため切除範囲を最小限に抑えることが，外科治療の成功

において極めて重要である．一方で，多チャネル計測によって得られる脳波信号は，高次元かつ非定

常性を有するため，視診や従来の線形解析手法のみでは，てんかん焦点の同定は容易ではない．そこ

で本研究では，非線形動力学に基づく指標である順列エントロピーを用いて脳波信号の複雑性を定量

化し，さらにグラフ理論におけるモジュラリティ解析を適用することで，脳全体の動的結合構造に基

づいたてんかん焦点ネットワーク抽出手法を提案する．
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2 手法

2.1 脳波データ

本研究で使用する脳波データは，京都大学大学院医学研究科てんかん・運動異常生理学講座におい

て，0.01 Hz から 600 Hz までの広帯域周波数を同時に記録した高精度なデータである．右側頭葉て

んかん患者（以下，Pt1）に関しては，全 50 個の硬膜下電極を用いて皮質脳波（ECoG）を記録して

いる．電極の留置は以下の 4つの領域に分類されている．

• A領域（右側頭葉前部）：20 個の電極を格子状に留置

• B領域（右側頭葉後部）：20 個の電極を格子状に留置

• C領域（側頭葉底面）：6 個の電極を線状に留置

• D領域（シルビウス裂）：4 個の電極を線状に留置

てんかん焦点は，D01（D 領域の 1 番目の電極）および B13（B 領域の 13 番目の電極）周辺で確認

されている．これらの脳波データは，サンプリングレート 2000 Hz で，600 Hz の高周波フィルター

を使用して記録されており，難治性てんかん焦点の新しいバイオマーカーとして注目している DC電

位が観測されている（[2], [3]）．図 1は，Pt1-ictal1 の脳波データ（上段）およびスペクトログラム

（下段）である．横軸は時間（分），縦軸は上段が電位 [µV ]，下段が周波数 [kHz] を表している．ま

た，赤破線で囲まれた領域は発作区間であり，発作開始前 5 分から発作終了後 5 分までをプロット

している．D01, B13 電極はてんかん焦点周辺の電極であり，A04 電極は焦点から離れた位置に留置

されている．これに基づいて，各電極の発作時の特徴を以下に述べる．

1. てんかん焦点電極（D01, B13）

図 1に示すように，D01, B13電極の脳波（上段）は，発作直前において明確な振幅の増大を

示している．これが DC電位であり，この直後に発作が発生している．また，スペクトログラ

ム（下段）では，発作時の各周波数帯域においてエネルギーが顕著に増加していることが確認

できる．

2. 非焦点電極（A04）

A04電極は焦点から離れた位置に留置されており，D01, B13電極と比較すると，発作期にお

いても脳波に大きな変化は見られない．



図 1 脳波データとスペクトログラム（左から D01, B13, A04電極）

2.2 順列エントロピー

順列エントロピー（Permutation Entropy; PE）は，時系列データの非線形性や複雑性を評価する

ための指標である．2002年に Bandt と Pompe によって提案された手法 [6]で，計算がシンプルか

つ効率的である点が特徴である．この手法は，時系列データの値そのものではなく，値の大小関係

（順序）に基づいてエントロピーを計算する．順列エントロピーは，時系列データの局所的な順序構

造を用いて，その情報量を測定する．シャノンエントロピーが確率分布に基づいて計算されるのに対

し，順列エントロピーはデータの順序関係に着目し，その多様性をエントロピーとして定量化する．

以下に，順列エントロピーの具体的な計算手順を示す．

2.2.1 遅延座標系の構築

本研究では，観測された時系列データがもつ何らかの動的構造を抽出するため，遅延座標系を用い

た状態空間の再構成を行う．本手法は，単一の変数として得られる時系列データを高次元空間へ射影

することにより，構造を調べる手法である．まず，観測された 1 次元の時系列データを {x(t)}N−1
t=0

とする．ここで，t は時刻を表す整数値であり，データ総数は N 個である．例えば，サンプリング

周波数 2,000 Hz で 1 秒間記録された脳波データの場合，N = 2, 000 となる．この時系列データか

ら遅延座標系を構成するために，まず埋め込み次元 M と遅延時間 τ を定める．これらのパラメー

ターに基づき，時刻 t における M 次元の再構成ベクトル X(t) を以下のように定義する．

X(t) = (x(t), x(t+ τ), x(t+ 2τ), . . . , x(t+ (M − 1)τ)) (1)

時系列データ全体に対して，この操作を適用することで，以下の式で示される N − (M − 1)τ 個



の M 次元データ列が得られる．

{(x(t), x(t+ τ), x(t+ 2τ), . . . , x(t+ (M − 1)τ)}N−(M−1)τ
t=0 (2)

本手法を臨床データに適用した先行研究 [4]では，てんかん患者の皮質脳波（ECoG）から，発作

時の高周波振動（High-Frequency Oscillations; HFOs）を記述する数理モデルを力学系の枠組みで

構成している．この報告では，本来は大自由度なダイナミクスを持つ脳活動が，発作時には低自由度

な力学系として記述され得ることを示しており，発作という現象の特異性を力学的な観点から裏付け

ている．

2.2.2 順列による記号化

2.2.1 で構成した遅延座標系 X(t) から，高周波振動（High-Frequency Oscillations; HFOs）の動

的構造に抽出するため，時系列の順序関係に基づく記号化を行う．脳波データが持つ情報は極めて膨

大であるが，本手法を用いることで，振幅そのものの変動に対するロバスト性を保ちつつ，振動の本

質的な挙動を簡略化して記述することが可能となる．

遅延座標系における M 次元のベクトル

X(t) = (x(t), x(t+ τ), x(t+ 2τ), . . . , x(t+ (M − 1)τ)) (3)

に対し，各成分の大小関係に基づき，順序パターン π を割り当てる．次元 M に対して存在する順

序パターンの総数は M ! 通りである．例えば M = 3 の場合，各成分の大小関係は 3! = 6 通りのパ

ターンに分類され，各々に固有の記号が対応付けられる．埋め込み次元 M を大きく取るとパターン

数が爆発的に増大し，計算負荷の観点から，M = 5 程度とするのが妥当である．次に，与えられた時

間窓内において，特定の順序パターン π が出現する確率分布 p(π) を算出する．この分布に対し，時

系列の複雑性を定量化する指標として，以下の順列エントロピー（Permutation Entropy; PE）を

定義する．

PE = −
∑
π

p(π) log2 p(π) (4)

PE は，時系列データが決定論的かつ規則的な構造を有するほど小さな値を取り，一方で，ノイズ

成分を多く含むランダムな挙動を示すほど大きな値を取るという性質を持つ．本研究では，発作時お

よび発作間欠期においてそれぞれ PE を算出し，両者のエントロピーの変化を比較することで，脳

波に内在する振動現象の本質的な動的挙動を抽出する．

2.3 モジュラリティ

重み付き無向グラフを考える．ノード i, j 間のエッジの重みを Rij，ノード i の重み付き次数（強

度）を ki =
∑

j Rij，全エッジ重みの総和を 2m =
∑

i,j Rij とする．ci をノード i の所属するコ

ミュニティとし，δ(i, j) をクロネッカーのデルタとすると，モジュラリティ Q は次式で与えられる．



Q =
1

2m

∑
i,j

(
Rij −

kikj
2m

)
δ(ci, cj)

=
1

2m

∑
i,j

Rijδ(ci, cj)−
1

2m

∑
i,j

kikj
2m

δ(ci, cj)

(5)

ここで，第 1 項 はネットワークの与えられた分割に対するコミュニティ内のノード同士の接続強

度，第 2 項 はランダムネットワークにける接続強度の期待値を表す．したがってモジュラリティは，

ランダムな接続と比較してコミュニティ内部の結合がどれだけ強いかを定量化する指標であり，Q が

大きいほど良い分割であると解釈される．

2.4 Louvain 法

ネットワークのクラスタリングにおいては，ノード集合が内部で密に結合し，外部とは疎に結合す

る部分集合（コミュニティ）に分割することを目的とする．Louvain 法は，モジュラリティを局所的

に最大化するヒューリスティックなアルゴリズムであり，以下の 2 つのフェーズを繰り返すことで

コミュニティ分割を更新する [2]．

■フェーズ 1：局所的モジュラリティ最大化 初期状態として，すべてのノードがそれぞれ独立した

コミュニティに属すると仮定する．各ノードについて，隣接ノードが属する別のコミュニティへ移動

させた場合のモジュラリティの変化量を計算し，最もモジュラリティが増加する移動を選択する．こ

の操作を全ノードに対して繰り返し，いずれの移動によってもモジュラリティが増加しなくなった時

点でフェーズ 1 を終了する．

■フェーズ 2：ネットワークの縮約 フェーズ 1 で得られた各コミュニティを 1 つの縮約ノードと

みなし，新たな縮約ネットワークを構成する．同一コミュニティ内のエッジは縮約ノードの自己ルー

プとして集約され，異なるコミュニティ間のエッジは対応する縮約ノード間の重み付きエッジとして

集約される．この縮約ネットワークに対して，再びフェーズ 1 を適用する．

フェーズ 1 およびフェーズ 2 を交互に適用し，縮約後のネットワークにおいてモジュラリティが

それ以上増加しなくなった時点でアルゴリズムを停止する．この反復過程により，Louvain 法はネッ

トワークの階層的なコミュニティ構造を自動的に抽出する．Louvain 法は，局所的なモジュラリティ

改善とネットワーク縮約を組み合わせることで，大規模ネットワークに対しても高い計算効率を有す

るという利点を持つ．また，重み付きネットワークに自然に適用可能であり，階層的なコミュニティ

構造を獲得できる点も特徴である．



図 2 Louvain 法の概要図

3 結果

難治性てんかん（Pt1）の脳波データから得られた順列エントロピーについて以下の成果を得た．

1. 順列エントロピーを用いて脳波データの複雑性を評価した結果，発作開始に先行して PE 値

が有意に減少することを確認した．

2. 各電極の順列エントロピーの相関に基づいて電極間ネットワークを構築することで，てんかん

焦点を含むコミュニティと焦点以外のコミュニティを明確に分離できることを確認した．ま

た，Louvain 法によって，これらのコミュニティの自動抽出が可能であることが分かった．

3.1 順列エントロピーによる脳波データの複雑性評価

本研究における適用例として，てんかん焦点領域である D01 電極から記録された脳波データの順

列エントロピーの推移を示す．解析パラメーターは埋め込み次元 M = 5，遅延時間 τ = 10 とした．

図 3 より，発作開始（3,430,641 [pts]）に先行して PE の値が明瞭に減少しており，非てんかん焦

点電極のエントロピー挙動（図 4）と比較して動的な複雑性が低下していることが確認できる．この

結果は，順列エントロピーが発作の抽出に加えて，てんかん焦点を特定にする上で非常に有効な指標

であることを示唆している．



図 3 Pt1-D01 電極における脳波データ（上段）と順列エントロピー（下段）．赤破線で囲まれた

領域は発作期間を示す．

図 4 Pt1-A04 電極における脳波データ（上段）と順列エントロピー（下段）．赤破線で囲まれた

領域は発作期間を示す．

3.2 モジュラリティ解析によるてんかん焦点ネットワークの抽出

電極間の相互作用を評価するため，各電極における順列エントロピー間の相関解析を行った．図 5

は，Pt1 の脳波データに対して発作時に順列エントロピーを算出し，相関係数が 0.65 を超える電極

対を結合した相関ネットワークを示している．同図より，てんかん焦点を含む電極群と，焦点以外の

電極群とが明確に分離されたコミュニティ構造を形成していることが確認でき，発作時には焦点間で

強い相関が顕著に現れることが分かる．一方，発作間欠期においては，てんかん焦点と焦点以外の電

極との結合も強く現れ，発作時に見られたような明瞭なコミュニティ構造は形成されない．これらの

結果から，順列エントロピーの相関ネットワークは，発作時におけるてんかん焦点特有の結合構造を

反映していることが示唆される．

しかしながら，上記のネットワーク構築では相関係数の閾値を設定する必要があり，その選択には

一定の恣意性が含まれる可能性がある．そこで次に，順列エントロピーの相関ネットワークに対して

Louvain 法を適用し，閾値設定に依存しないコミュニティ分割を行った結果を図 6に示す．発作時の

ネットワークに Louvain 法を適用したところ，前述の閾値処理を施した場合と同様に，てんかん焦

点を含むコミュニティと焦点以外のコミュニティとに自動的に分割された．



以上の結果より，順列エントロピーの相関に基づくネットワーク解析と Louvain 法によるコミュ

ニティ検出を組み合わせることで，相関係数の閾値を恣意的に定めることなく，てんかん焦点ネット

ワークを自動的に抽出できることが確認された．

図 5 発作時における順列エントロピーの相関ネットワーク．相関係数が 0.65 を超える電極間を

結合している．赤ラベルはてんかん焦点電極を示す．

図 6 Louvain 法による発作時の順列エントロピー相関ネットワークのコミュニティ分割結果．

赤ラベルはてんかん焦点電極を示す．
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